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Abstract

In this study, a Genetic Algorithm (GA) is introduced to optimize the multidimensional spatial selective RF pulse to reduce the pass-
band and stopband errors of excitation profile while limiting the transition width. This method is also used to diminish the nonlinearity
effect of the Bloch equation for large tip angle excitation pulse design. The RF pulse is first designed by the k-space method and then
coded into float strings to form an initial population. GA operators are then applied to this population to perform evolution, which is an
optimization process. In this process, an evaluation function defined as the sum of the reciprocal of passband and stopband errors is used
to assess the fitness value of each individual, so as to find the best individual in current generation. It is possible to optimize the RF pulse
after a number of iterations. Simulation results of the Bloch equation show that in a 90� excitation pulse design, compared with the
k-space method, a GA-optimized RF pulse can reduce the passband and stopband error by 12% and 3%, respectively, while maintaining
the transition width within 2 cm (about 12% of the whole 32 cm FOV). In a 180� inversion pulse design, the passband error can be
reduced by 43%, while the transition is also kept at 2 cm in a whole 32 cm FOV.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Multidimensional spatially selective RF pulses have
been widely used in MRI. They are able to limit the electro-
magnetic signal emitted from the imaging object within
arbitrarily shaped and spatially restricted areas, and are
commonly used for excitation [1–4], refocusing and inver-
sion [5–7]. They can be designed using the k-space method
[1,2]. However, the finite length RF pulse may cause ripples
in the excitation profile, and the undesired signals from the
transition may degrade the image quality. Also, since it is
based on Fourier Transform, the nonlinearity of the Bloch
equation has a considerable impact on the excitation pro-
file when it is used for large tip angle excitation.

The Shinnar Le Roux (SLR) method has been widely
used in slice selection [8], allowing the designer to make
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trade-offs among parameters such as passband error, stop-
band error and transition width. This method has also been
extended to the design of multi-dimensional excitation
pulses [9,10], but is limited in uniform sampling k-space
trajectories.

Between 1987 and 1991 several studies [11–13] have
applied a Genetic Algorithm (GA) to design new types of
RF pulse. This pulse is composed of different shaped puls-
es, which could be chosen and adjusted by a GA. The
shaped pulses are mainly Gaussian and Sinc function,
which constrain the whole pulse shape.

In recent years, GAs have been widely used in filter
design [14–17] to adjust the filter amplitudes directly and
to optimize the Finite Impulse Response (FIR) filter to fit
ideal frequency response. The RF pulse design is very sim-
ilar to the FIR filter design, in which the passband and
stopband correspond to the in-slice and out-slice, respec-
tively. Here, the finite impulse response corresponds to
the amplitude of the RF pulse. We could firstly design an
RF pulse using the k-space method, and then carefully
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adjust the amplitude of the RF pulses within a small range,
to reduce the ripples induced by truncated Fourier coeffi-
cients, and diminish the effect caused by the Bloch equation
nonlinearity effect. In this study, a novel GA optimization
approach, which adjusts the RF pulse directly, is proposed
to optimize the multidimensional spatial selective RF pulse
designed by the k-space method to reduce the passband
and stopband errors in the excitation profile and to limit
the width of the transition band. This method allows
trade-offs among the different parameters, and can be
applied to arbitrary k-space trajectory design. The method
can also be used to optimize the excitation pulses with a
large tip angle as it is able to diminish the Bloch equation
nonlinearity effect.

2. Methods and procedure

There are two main steps in our method: (a) design of
the gradient waveforms and the RF pulse using the k-space
method; and (b) adjustment of the RF pulse amplitude
within a certain range using a GA to improve the excitation
profile. Here, the RF pulse is a series of discrete values (e.g.
512 discrete points).

In k-space method [1,2], a Fourier Transform approxi-
mation relation between the desired excitation profile and
the applied RF pulse is established. The RF pulse deter-
mines the weighting function, while gradient waveforms
define the k-space trajectory. Thus, the desired profile can
be approximated by Fourier Transform of spatial frequen-
cy weighting function multiplied by a sampling function. In
this work, spiral trajectory is adopted, and defined as:

kðtÞ ¼ kmaxð1� tÞei2pNð1�tÞ ð1Þ

where kmax and N are the max value of k-space and spiral
trajectory turns. To generate a cylinder profile, the weight-
ing function is defined as following [4]:

W ðkðtÞÞ ¼ J 1ðkðtÞÞ=kðtÞ ð2Þ

where J1 is the first order Bessel function of first kind.
Thus, the RF pulse is:

B1ðtÞ ¼ �ijgðtÞjW ðkðtÞÞ ð3Þ

where g(t) = (1/c)dk(t)/dt.
GA is an optimization method which imitates evolution-

ary process with genetic operators: reproduction, crossover
and mutation. First, the solutions are coded as an ‘individ-
ual’ binary or float string of a certain length. In this study,
a float string is described as:

v ¼ ½p1; p2; � � � ; pn� ð4Þ

where v denotes the individual, pi is a float number denot-
ing the amplitude of the discrete values of RF pulse, and n

is the individual length denoting the number of points. In
k-space design, the RF pulse is composed of hundreds of
discrete points. If all of them are adjusted by the GA, the
calculation will be prohibitively time-consuming. There-
fore, only n points at uniform intervals are selected for
adjustment, while the remainder are interpolated using
piecewise cubic spline interpolation.

This involves two problems, viz. the setting of the indi-
vidual length n and the pulse amplitudes adjustment range
d. In GA, to cover the solution space as far as possible, a
large number n should be adopted, which will leads to a
large initial population size. Because GA evolution dura-
tion is proportional to the population size, a prohibitive
amount of time for optimization will be required if n has
too large a value. The value of n must therefore be kept
within certain limits. However, piecewise cubic spline inter-
polation has been chosen to fill in the data between two
adjusted points. This requires estimation of all the ampli-
tudes except the n point values, which are accurately deter-
mined by the GA. If too small a value for n is used, large
estimation errors may be produced. Therefore, it is neces-
sary to select an appropriate value for n by trading off
between these two considerations.

The adjustment range d is set within ±10% of the origi-
nal amplitude of the point. Because Fourier coefficients in
the center area of the frequency domain, which correspond
to the discrete points of the RF pulse, are much larger than
those of truncated area, the adjustment value should be
within a small range.

Second, an evaluation function is defined to assess the
fitness of each individual. Normally, the higher the fitness
value, the better the individual. To minimize the errors in
passband and stopband and simultaneously limit the tran-
sition band width, the evaluation function is defined as:

f ðvÞ ¼ a=EpðvÞ þ b=EsðvÞ ð5Þ

where Ep(v) and Es(v) are the passband error and stopband
error of individual v, respectively; a and b denote constants
in the closed interval [1,10], which can be set at the appro-
priate value to trade-off between the actual requirements of
passband and stopband. For 90� excitation, the error Ep(v)
and Es(v) are defined as following:

EpðvÞ ¼ max
Dp
ðjM?ðv; xÞj � 1Þ ð6Þ

EsðvÞ ¼ max
Ds
ðjM?ðv; xÞj � 0Þ ð7Þ

where Dp and Ds are the desired passband and stopband
area, respectively. The width of the transition band can
be limited as a proper value by setting the area of Dp and
Ds before optimization. M^(v,x) is the transverse magneti-
zation after excitation [1]:

M?ðv; xÞ ¼ icM0

Z T

0

B1ðv; tÞe�icx�
R T

t
GðsÞds

dt ð8Þ

where c is the gyromagnetic ratio, M0 denotes the equilib-
rium longitudinal magnetization, B1(v, t) and G(s) are the
RF pulse envelope function of the individual v and the gra-
dient waveform, respectively. For simplicity, the equilibri-
um magnetization M0 is assumed to be 1.

For 180� inversion, the error Ep(v) and Es(v) are defined
as:
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EpðvÞ ¼ max
Dp
ðMzðv; xÞ � ð�1ÞÞ ð9Þ

EsðvÞ ¼ max
Ds
ðMzðv; xÞ � 1Þ ð10Þ

Usually, there are two definitions of error: max and aver-
age. The max value reflects the worst point in the excitation
profile. Given this, it is certain that the profile at other posi-
tions is better. The average value reflects the total perfor-
mance in the excitation profile, but the largest error is
unknown. Therefore, max is chosen to evaluate the excita-
tion profile error.

Third, three proper genetic operators and two relative
parameters are chosen for evolution, these are described
below:

(1) The roulette wheel selection method is adopted as the
reproduction operator, which is used for selecting elit-
ist individuals into a mating pool to perform crossover
and mutation. Assuming there are M individuals
v1,v2, . . . ,vM in a population, the fitness value of each
individual vi is denoted by f(vi). The selection probabil-
ity of an individual is proportional to its fitness value:
P T s
~ðvÞ ¼ vi

n o
¼ f ðviÞP

j¼1M f ðvjÞ
ð11Þ

where Ts and~v denote the reproduction operator and
population (v1,v2, � � � ,vM), respectively. Eq. (11) indi-
cates that the higher the fitness value, the larger the
probability is for an individual being selected to per-
form evolution. This follows the evolution principle
‘Survival of the Fittest’.
(2) Heuristic crossover [18] takes two parents and per-
forms an extrapolation in the direction of the better
parent:
v

w
f

g
i
e
s

w
v
a
r
D
w
t

new ¼ r � ðvi � vjÞ þ vi ð12Þ

here r is a random number between 0 and 1, and
(vi) P f(vj). It is possible for heuristic crossover to
enerate a vnew out of the range. If no new solution
s found after three attempts, no offspring will be gen-
rated. The advantage of heuristic crossover is it can
earch a solution in a more promising direction to-
ards the optimal solution.
w

(3) Non-uniform mutation [18] is adopted, and is depicted
in the following:
p0k ¼
pk þ Dðt;UB� pkÞ rD ¼ 0

pk � Dðt; pk � LBÞ rD ¼ 1

�
ð13Þ

here LB and UB are the lower and upper bounds of
ariable pk which is defined in Eq. (4); rD and t denote
random digit and the present generation number,

espectively, p0k is the mutation result. The function
is a non-uniform probability distribution function,

hich narrows to a point distribution as the genera-
ion number approaches the maximum generation:
Dðt; sÞ ¼ s � r � 1� t
T

� �b

ð14Þ

where r is random real number between 0 and 1, b is a
parameter determining the degree of dependency on
iteration number, we used b = 3 here. T is the max
generation number.
(4) Before optimization, it is a fundamental decision for
choosing population size M. There is no general theory
for setting optimal population size. Usually, it is deter-
mined by experiments or experience. In this work, 10
different population size setting (from 10 to 100 at
interval 10) were tested, and finally we found that the
GA with population size of 30 reaches the stop criteri-
on faster than other GAs.

(5) Stop criterion indicates when the evolution stops.
Because in our research we care more about the pass-
band error, the stop criterion was set at passband error
Ep(v) equaling a specified value E0. For different appli-
cation requirement E0 will be different. In this work, E0

was 0.02 for excitation pulse optimization and 0.04 for
inversion pulse.

Following the above steps, the RF pulse can be opti-
mized by genetic evolution iteratively. At the beginning,
an initial population with M individuals is generated ran-
domly, and the fitness value of each individual is evaluated.
The individuals with higher fitness weigh much more than
lower fitness individuals. Therefore, according to the rou-
lette selection rule, the GA reproduces the high quality
individuals to the mating pool, although the reproduction
does not improve the fitness of individuals. Then, these
high quality individuals are crossed so that the distribution
of schema is modified, which make it possible to generate
some higher fitness individuals. Each RF pulse is represent-
ed by an individual composed of genes, therefore the RF
pulse can be regarded as composed of many discrete points.
In the crossover operation, the amplitudes of these discrete
points in two RF pulses are changed to generate new RF
pulses. This makes it possible to attain some better RF
pulses. According to Holland’s Schema Theorem [19], the
best individual will be finally found by the genetic evolu-
tion. Next, mutation is applied to explore larger searching
space. The RF pulse can also be regarded as many discrete
points. The mutation operator changing genes of an indi-
vidual, makes it possible to find some higher performance
RF pulses. According to evolution principle, these three
genetic operators—reproduction, then crossover, and final-
ly mutation—should be in sequence.

In addition, in order to insure the fitness of the best
individual in each generation monotonically increases,
the best individual in each generation will be repro-
duced to the next generation without evolution. Finally,
after evolution, the best individual in the final genera-
tion will be achieved. This best individual is the opti-
mized RF pulse. The algorithm flowchart is shown in
Fig. 1.



Fig. 1. Flowchart of GA optimized RF pulse design.

Fig. 2. (a) Evolution process of best population fitness (solid line) and
average fitness (dash line) in each generation, for 90� pulse. (b) Evolution
process of best population fitness (solid line) and average fitness (dash line)
in each generation, for 180� pulse.
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3. Simulation

This GA evolution method can be used to optimize dif-
ferent types of RF pulse. In this study, a 2D selective pulse
using spiral trajectory was designed by the k-space method
and optimized by GA. Then a numerical simulation of the
Bloch equation was performed to examine the accuracy of
the actual excitation profiles. Finally, the excitation profile
errors of both the k-space method designed RF pulse and
the GA-optimized RF pulse are calculated and compared
to verify the effectiveness of the proposed method.

In the 2D selective pulse design, two pulses were designed,
one for 90� flip angle excitation and one for 180� flip angle.
Both pulses were based on the same spiral k-space trajectory
with 12 turns, and the max value of k-space was 0.5 cycle/cm.
The following parameters were the same for both pulses. The
desired excitation profile (Figs. 3b and 4b) was a 7 cm diam-
eter cylinder with FOV of 32 cm. The transition band width
was set as 2 cm with the magnetization dropping down from
0.97 to 0.02 for 90� pulse and rising from �0.98 to 0.98 for
180� pulse. A gradient pulse with 4G/cm amplitude and
15G/cm/ms slew rate was used. With the GA, after several
tests, the parameters were set as: the population size M was
30, the individual length n was 10 and the terminal condition
was the passband error equaling 0.02 for 90� pulse and the
passband error equaling 0.04 for 180� pulse. The coefficient
a and b in Eq. (5) were set as 1 and 10 for 90� pulse, 4 and
1 for 180� pulse.

In addition, because a GA is stochastic, the same
parameters used on the same problem by the same GA will
generally yield different results. If the final result of each
evolution varies within too great a range, the GA may be
unstable and virtually unusable in the application. It is
important to clearly indicate the range of the result after
GA optimization. Here, we used the mean and standard
deviation analysis to evaluate the convergence stability of
the GA. Simulations with the same parameters were made
several times, and the excitation profile errors of the best
population after each evolution were recorded. This set
of data was then used to calculate the mean and standard
deviation of the optimization results. The mean and stan-
dard deviation indicate the expectation and varying range
of the data set, respectively. The smaller the standard devi-
ation, the greater the stability of the performance of this
method. As it is necessary to use as large a data set as pos-
sible to achieve robust statistical results, we made 200 sim-
ulations in this study to support our statistical analysis.
4. Results

The genetic evolution process of the 90� pulse and 180�
pulse are shown in Fig. 2, which illustrates the improve-



Fig. 3. Simulation comparison of the transverse magnetization produced by 90� RF pulses. (a) k-Space method designed RF pulse (solid line); GA
optimized RF pulse (dash line); (b) desired 2D excitation profile; (c) excited volume of k-space method designed RF pulse; (d) excited volume of GA
optimized RF pulse; (e) excitation profile of k-space method designed RF pulse; (f) excitation profile of GA optimized RF pulse; (g) 1D excitation profile
of original RF pulse (solid line) and optimized RF pulse (dash line).
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Fig. 4. Simulation comparison of the longitudinal magnetization produced by 180� RF pulses (a) k-Space method designed RF pulse (solid line); GA
optimized RF pulse (dash line); (b) desired 2D inversion profile; (c) excited volume of k-space method designed RF pulse; (d) excited volume of GA
optimized RF pulse; (e) inversion profile of k-space method designed RF pulse; (f) inversion profile of GA optimized RF pulse; (g) 1D inversion profile of
original RF pulse (solid line) and optimized RF pulse (dash line).
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ment in best individual fitness and average fitness at each
generation. The best individual fitness (solid curve) of each
generation remained the best for a period and was then
replaced by a better one, corresponding to one jump in
the best fitness curve. Prior to each jump, the average fit-
ness value (dash curve) increased because the GA operators
were adjusting the value of the worse individuals to
approach that of the best individual. After each jump,
the average fitness was always small, because the jump of
the best individual decreased population diversity. When
a GA is used, best individual fitness is much more impor-
tant than average fitness, because the optimization goal is
to approach the maximum. Fig. 2 shows that the fitness
value of the best individual increased monotonically.
Fig. 2a shows the evolution of the excitation pulse, the
GA reached the stop criterion after 46 generations, taking
about 6 min; Fig. 2b shows the inversion pulse evolution,
the GA reached the stop criterion after 32 generations, tak-
ing about 5 min.

Fig. 3 shows the results of the numerical simulation of
the transverse magnetization produced by the original
and the optimized 90� RF pulses. Fig. 3a shows the 2D
selective RF pulses designed by the k-space method (solid
line) and optimized by the GA (dash line). It is noteworthy
that the optimized RF pulse was slightly different from the
original pulse, which affected the actual excitation profile.
Fig. 4c and d show the excited volumes generated by the
two pulses. To make the comparison clearer, the 2D excita-
tion profiles are shown in Fig. 3e and f. It is evident that the
excitation accuracy was greatly improved using the opti-
mized 90� RF pulses. According to Eqs. (6) and (7), the
passband error fell from 0.14 (before optimization) to
0.02 (after optimization) while the stopband error fell from
0.14 (before optimization) to 0.11 (after optimization)
within 6 min. The transition was limited within 2 cm when
the magnetization dropped from 0.98 to 0.02. The corre-
sponding 1D excitation profiles of the central line of the
slice are plotted in Fig. 3g, which shows the passband, stop-
band and transition more clearly.

According to the statistical analysis of the 200 simula-
tions of the 90� RF pulses optimization using the same
parameters, the mean and standard deviation of the gener-
ation number for GA reaching stop criterion were 42 and
3.24, respectively, while those of the stopband error were
0.12 and 0.02. The standard deviations for stop generation
number and stopband error were only 7.7% and 16.7% of
the means, indicating that this algorithm is stable enough
for convergence in practical 90� pulse design.

The numerical simulation of longitudinal magnetization
of 180� RF pulses is shown in Fig. 4. Fig. 4a shows the 2D
selective RF pulses designed by the k-space method (solid
line) and optimized by the GA (dash line). The difference
between the original pulse and the optimized pulse affected
the actual excited volume, which is shown in Fig. 4c and d.
To make the comparison clearer, 2D excitation profiles are
shown in Fig. 4e and f. Again, it is clear that the excitation
accuracy was greatly improved using the optimized 180�
RF pulses. According to Eqs. (9) and (10), the passband
error fell from 0.47 (before optimization) to 0.04 (after
optimization) while the stopband error rose from 0.04
(before optimization) to 0.06 (after optimization) within
5 min. The transition was limited within 2 cm as the mag-
netization rose from �0.98 to 0.98. The corresponding
1D excitation profiles of the central line of the slice are
plotted in Fig. 4g, which shows the passband, stopband
and transition more clearly. Although the ripples in the
stopband of the optimized pulse were slightly larger than
those of the original pulse, the passband profile shows a
considerable improvement.

According to the results of the statistical analysis for the
180� pulse optimization, the mean and standard deviation
of the stop generation number were 36 and 3.7, respective-
ly, while the stopband errors were 0.06 and 0.003, respec-
tively. The standard deviations for the stop generation
number and the stopband error were only 10% and 5%
of the means. This indicates that this algorithm is stable
enough for convergence for practical inversion pulse
design.

5. Discussion and conclusion

In this study, a GA has been used to optimize RF pulse
designed by k-space method to reduce the passband and
stopband errors of excitation profile while limiting the
width of the transition band. The simulation results of a
90� excitation pulse have shown that optimizing the GA
can reduce the errors of the excitation profile significantly
while keeping the transition width within the desired val-
ues. In the simulation of a 180� inversion pulse, the longi-
tudinal inversion profile of the original pulse was degraded
due to the nonlinearity of the Bloch Equation. After opti-
mization, although there were some small ripples in the
stopband, the nonlinearity effect was reduced and the accu-
racy of the profile was greatly improved. Although this
method has been only tested on a 2D selective pulse using
spiral trajectory, it could also be easily applied to a slice
selection pulse and a 3D selective pulse and used for an
arbitrary k-space trajectory.

This method allows us to trade-off between passband
error, stopband error and transition width. If the parame-
ters are set too small, the optimization process will require
far more iterations, and it might even become impossible
for the GA to find the proper solution. Because fixing the
pulse length also fixes the upper bound of excitation profile
accuracy, roughly the same as in the FIR filter design,
shortening the transition width and reducing the error
would require a longer filter length. Theoretically, an adap-
tive GA approach which optimizes both the RF pulse
length and its amplitude might produce a design which
could search for better solutions. But it would probably
require a considerably larger searching space and much
longer evolution time.

During the GA optimization process, the adjusted RF
pulse may induce larger RF power than the original RF



Y. Pang, G.X. Shen / Journal of Magnetic Resonance 186 (2007) 86–93 93
pulse, which could lead to more power deposition in the
imaging object. Therefore, SAR should be kept to a toler-
able value when reducing the excitation profile errors. One
possible solution is to introduce the SAR estimation into
the definition of the evaluation function. However, this
would require trade-offs between more parameters (SAR,
passband, stopband and transition), and this would be a
much more involved and complex process.
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